Slim Prompten in Claude voor Ontwikkelaars
Een Uitgebreide Gids voor Context, Controle en Samenwerking - Bijgewerkte Versie
Inhoudsopgave
1. Inleiding: Het Potentieel van Claude Ontsluiten
1. Kernprincipes van Effectief Prompten
1. Contextbeheer in Claude Beheersen
1. Claude Sturen voor Vervolgvragen
1. Werken met Bestanden en Gegevens
1. Ontwikkelaarsworkflows Optimaliseren
1. Praktische Scenario’s
1. Conclusie
1. Kennistoets
1. Cheatsheet
1. Antwoorden
1. Inleiding: Het Potentieel van Claude Ontsluiten voor Ontwikkelaars
Claude, ontwikkeld door Anthropic, is een geavanceerde AI-assistent die is ontworpen met het oog op veiligheid, nauwkeurigheid en beveiliging. Voor softwareontwikkelaars biedt Claude uitgebreide functionaliteiten die cruciaal zijn voor moderne ontwikkeling.
Kerncapaciteiten voor Ontwikkelaars
Claude blinkt uit in diverse ontwikkelingstaken: - Het opstellen en itereren van code - Het genereren van nieuwe code van scratch - Het visualiseren van gegevens - Het analyseren van tekst en afbeeldingen - Het bieden van robuuste beslissingsondersteuning
Voor praktische toepassingen kan Claude helpen bij: - Het bewerken van bestanden - Het oplossen van bugs - Het uitleggen van complexe architectonische ontwerpen - Het uitvoeren van tests - Het oplossen van merge-conflicten - Het beheren van diverse Git-taken
Waarom “Slim Prompten” Essentieel is
Het vermogen om “slimme prompts” te creëren is van het grootste belang voor het optimaliseren van Claude’s prestaties. Effectief prompten beïnvloedt direct: - Nauwkeurigheid van de outputs - Consistentie in resultaten - Algehele bruikbaarheid van de AI-assistent - Operationele kosten door minder iteraties
De “Stagiair op Eerste Werkdag” Analogie
Effectief prompten kan worden gezien als het geven van duidelijke, expliciete en gedetailleerde instructies aan een “stagiair op hun eerste werkdag”. Dit betekent:
Wat te voorzien: - Uitgebreide begeleiding - Expliciete instructies - Relevante context - Concrete voorbeelden - Stap-voor-stap methodologieën - Duidelijke verwachtingen voor output
Wat te vermijden: - Vage instructies - Ontbrekende context - Onduidelijke verwachtingen - Aannames over voorkennis
2. Kernprincipes van Effectief Prompten voor Ontwikkelaars
Duidelijkheid, Specificiteit en Voorbeelden
Claude reageert uitzonderlijk goed op duidelijke, expliciete en zeer specifieke instructies. Dubbelzinnigheid is de primaire belemmering voor effectieve communicatie met AI.
Slecht voorbeeld:
Schrijf wat code.
Beter voorbeeld:
Schrijf een Python-functie calculate_discount die twee argumenten accepteert:
price (float) en discount_percentage (float). De functie moet de uiteindelijke
prijs retourneren na toepassing van de korting. Zorg ervoor dat de
kortingspercentage tussen 0 en 100 ligt en geef een foutmelding als dit niet
het geval is. Voeg ook docstrings toe.
Few-Shot Prompting
Het voorzien van Claude van realistische en specifieke voorbeelden van gewenste inputs en outputs is een “uitermate effectieve” methode. Deze techniek helpt Claude de verwachtingen nauwkeurig te begrijpen.
Voorbeeld van Few-Shot Prompting voor code-redactie:
Je bent een expert redactor. Ik ga je wat tekst geven. Verwijder alle
persoonlijk identificeerbare informatie uit deze tekst en vervang deze
door XXX. Het is heel belangrijk dat PII zoals namen, telefoonnummers en
huis- en e-mailadressen worden vervangen door XXX. Hier zijn twee
synthetische voorbeelden van hoe dit moet worden gedaan:

<examples>
<example>
<text>
Mijn naam is Jacob LaPont. Mijn e-mailadres is jlp@geemail.com en mijn
telefoonnummer is 555-492-1902. Ik ben 43 jaar oud. Mijn account-ID is 52777930.
</text>
De output moet zijn:
<response>
Mijn naam is XXX. Mijn e-mailadres is XXX@XXX.XXX en mijn telefoonnummer
is XXX. Ik ben XXX jaar oud. Mijn account-ID is XXX.
</response>
</example>
</examples>

Nu is hier de tekst die ik wil redigeren:
<text>
De naam van de klant is Steven Smith met klant-ID 44201312. Zijn
e-mailadres is steven.smith@geemail.com, of bereik hem telefonisch op 555-182-9942.
</text>
Gestructureerd Denken en Redeneren
Claude levert vaak nauwkeurigere antwoorden wanneer expliciet wordt geïnstrueerd om “stap voor stap te denken”. Deze techniek, Chain-of-Thought (CoT) prompting genoemd, moedigt Claude aan om problemen systematisch te doorlopen.
Effectieve denk-instructies: - Denk stap voor stap - Basis redenering - Gebruik uitgebreid denken - Voor complexe problemen - <thinking> tags - Voor expliciete redenering
Let op: Termen zoals “think harder” of “ultrathink” zijn niet bewezen effectief en zijn gebaseerd op mythen uit de gemeenschap.
Voorbeeld van Chain-of-Thought prompting voor debugging:
Ik heb een Python-functie die een onverwachte fout geeft. Ik wil dat je me
helpt debuggen. Denk stap voor stap na over de mogelijke oorzaken van de
fout en stel vervolgens een plan voor om deze op te lossen.

<code_snippet>
def process_data(data):
 # ... complexe logica ...
 result = 10 / data['count'] # Potentiële ZeroDivisionError
 # ...
 return result
</code_snippet>

De foutmelding is: `ZeroDivisionError: division by zero`.

<thinking>
1. **Begrijp de fout:** De fout `ZeroDivisionError` treedt op wanneer er
 wordt geprobeerd te delen door nul.
2. **Lokaliseer de fout:** De foutmelding wijst naar de regel
 `result = 10 / data['count']`.
3. **Identificeer de oorzaak:** Dit betekent dat `data['count']` nul is
 op het moment van de deling.
4. **Overweeg scenario's:**
 - Is `data['count']` altijd een getal?
 - Kan `data['count']` nul zijn in geldige invoer?
 - Wordt de invoer `data` correct gevalideerd?
5. **Stel oplossingen voor:**
 - Voeg een controle toe om deling door nul te voorkomen
 - Overweeg hoe nul moet worden afgehandeld
</thinking>

Stel nu een gedetailleerd plan voor om deze fout op te lossen, inclusief codevoorbeelden.
XML-tags voor Structuur
Claude’s training heeft de prestaties specifiek geoptimaliseerd met XML-tags. Deze tags zijn zeer effectief in het sturen van de structuur van Claude’s output.
Voorbeeld van XML-tags voor structuur en opmaak:
<instructies>
Je bent een senior software-architect. Analyseer de bijgevoegde codebestanden
en geef een overzicht van de architectuur.
De output moet de volgende secties bevatten, elk omwikkeld met de juiste XML-tags:
1. Een <architectuur_overzicht> dat de belangrijkste componenten beschrijft
2. Een <afhankelijkheden_analyse> die externe bibliotheken identificeert
3. Een <verbeterpunten> sectie met aanbevelingen
</instructies>

<code_bestanden>
<bestand naam="main.py">
Inhoud van main.py
</bestand>
<bestand naam="utils.py">
Inhoud van utils.py
</bestand>
</code_bestanden>
Iteratieve Verfijning en Feedbacklussen
Het schrijven van prompts is inherent een iteratief proces. Als Claude’s eerste reactie niet aan de verwachtingen voldoet, moeten ontwikkelaars actieve en specifieke feedback geven.
Voorbeeld van iteratieve verfijning: - Eerste prompt: “Schrijf een functie om gebruikersinvoer te valideren.” - Claude’s antwoord: (Genereert een basisvalidatiefunctie) - Iteratieve feedback: “Dat is een goed begin, maar pas de functie aan om ook te controleren op minimale lengte (8 tekens) en het gebruik van ten minste één speciaal teken. Voeg ook eenheidstests toe voor deze nieuwe validatieregels.”
Tabel 1: Essentiële Prompting Technieken voor Ontwikkelaars
	Techniek
	Beschrijving
	Ontwikkelaars Gebruiksscenario

	Duidelijkheid & Specificiteit
	Geef expliciete, ondubbelzinnige instructies; definieer gewenste output, formaten en beperkingen
	Vraag om een Python-functie die een specifieke API aanroept, met gedefinieerde input- en outputschema’s

	Few-Shot Prompting
	Voorzie concrete voorbeelden van input-output paren
	Toon voorbeelden van hoe PII moet worden geredigeerd in logbestanden

	Stap-voor-stap / CoT
	Instrueer Claude om systematisch door een probleem te denken
	Vraag Claude om een complex algoritme te debuggen door elke stap door te lopen

	XML-tags
	Gebruik XML-achtige tags om secties te structureren
	Omwikkel codefragmenten met <code_snippet> tags

	Rolspelen
	Wijs Claude een specifieke rol toe
	Vraag Claude om op te treden als beveiligingsanalist

	Iteratieve Verfijning
	Verfijn prompts op basis van eerdere reacties
	“Dat is goed, maar pas de foutafhandeling aan”

3. Contextbeheer in Claude Beheersen
Claude’s Contextvenster Begrijpen
Het “contextvenster” verwijst naar de totale hoeveelheid tekst waarnaar een taalmodel kan verwijzen bij het genereren van nieuwe tekst. Dit functioneert als zijn “werkgeheugen”.
Claude 4-modellen specificaties: - Grootte: 200.000 tokens (≈ 500 pagina’s tekst) - Omvat: Input (gesprekgeschiedenis + huidig bericht) + Output - Gedrag: Validatiefout bij overschrijding (geen stille afkapping)
Voordelen voor ontwikkelaars: - Hele codebases begrijpen: Meerdere codebestanden, configuratiebestanden en documentatie tegelijk uploaden - Lange discussies voeren: Uitgebreide debugging-sessies zonder contextverlies - Complexe problemen oplossen: Volledige context van complexe problemen behouden
Strategieën voor In-Sessie Contextopbouw
Voor complexe taken die niet in één keer kunnen worden opgelost, is het opsplitsen in meerdere, opeenvolgende prompts zeer effectief.
Voorbeeld van Prompt Chaining voor een ontwikkelingsworkflow:
Prompt 1 (Verkenning):
Lees de bijgevoegde bug_report.md en feature_spec.pdf bestanden. Identificeer
de kern van het probleem en de belangrijkste vereisten voor de nieuwe functie.
Schrijf nog geen code, maar geef een samenvatting van de bevindingen.
Prompt 2 (Planning):
Gebaseerd op de samenvatting van de bug en de functievereisten, stel een
gedetailleerd implementatieplan op. Gebruik <thinking> tags om je redenering
te tonen. Het plan moet stappen bevatten voor code-aanpassingen, tests en
mogelijke refactoring.
Prompt 3 (Implementatie):
Implementeer nu de eerste stap van het plan: het schrijven van de eenheidstests
voor de bugfix. Zorg ervoor dat de tests aanvankelijk falen.
Prompt 4 (Iteratie):
De tests falen zoals verwacht. Schrijf nu de code om de bug op te lossen en
de tests te laten slagen. Voer de tests opnieuw uit en bevestig dat ze slagen.
Optimale Documentplaatsing
Bij het werken met lange documenten (>20.000 tokens): - Plaats lange gegevens bovenaan uw prompt - Gebruik XML-tags voor structurering - Instrueer Claude om eerst te citeren voordat het verdergaat
Voorbeeld:
<document>
<source>architecture_document.pdf</source>
<document_content>
[Lange documentinhoud hier]
</document_content>
</document>

<document>
<source>api_specification.md</source>
<document_content>
[API specificatie hier]
</document_content>
</document>

Citeer eerst de relevante delen van de documenten voordat je verdergaat
met je hoofdtaken.
Context Behouden over Sessies: De Kracht van Claude Projecten
Claude’s “Projecten”-functie is een hoeksteen voor ontwikkelaars die behoefte hebben aan persistente kennisbases.
Een project omvat: - Beschrijvende titel - Gedetailleerde beschrijving - Projectkennis (geüploade bestanden) - Aangepaste instructies (project-specifieke systeemprompt) - Bijbehorende AI-chatgesprekken
Een Claude Project Opzetten
1. Titel en Beschrijving Geef uw project een duidelijke, beschrijvende titel en een gedetailleerde beschrijving van het doel.
2. Projectkennis (Bestanden) - Ondersteunde bestandstypen: PDF, DOCX, CSV, TXT, HTML, ODT, RTF, EPUB, JSON, afbeeldingen (PNG, JPG, GIF) - Limieten: 30 MB per bestand, 20 bestanden per chat, 200.000 tokens totaal - Niet ondersteund: ZIP-bestanden (moeten uitgepakt worden voordat uploaden)
Belangrijk: ZIP-bestanden worden niet nativ ondersteund door Claude Projects. Bestanden moeten individueel geüpload worden na uitpakking.
Voorbeelden van Projectkennis voor ontwikkelaars: - Hele codebases of specifieke modules (individuele bestanden) - API-documentatie, technische specificaties - Bugrapporten, feature-verzoeken - Ontwerpdocumenten, architectuurdiagrammen - Testplannen en testresultaten - Bedrijfsrichtlijnen voor codestijl
3. Aangepaste Instructies Persistente achtergrondinstructies die op alle gesprekken binnen dat project van toepassing zijn.
Voorbeelden van Aangepaste Instructies:
Je bent een senior Python-ontwikkelaar die gespecialiseerd is in schaalbare
backend-systemen.

Alle gegenereerde code moet voldoen aan PEP 8-richtlijnen en uitgebreide
docstrings bevatten.

Wanneer je een bug oplost, geef dan altijd eerst een analyse van de hoofdoorzaak
voordat je de oplossing presenteert.

Gebruik altijd XML-tags om codefragmenten te omwikkelen en uitleg te geven.

Als je onzeker bent over een vereiste, stel dan een verhelderende vraag in
plaats van aannames te doen.
Bestanden in Prompts Refereren
Algemene verwijzing:
Analyseer de code in de bijgevoegde bestanden en identificeer potentiële
beveiligingskwetsbaarheden.
Specifieke bestandsnaam:
Lees het bestand logging.py en leg uit hoe de logboekregistratie in dit
project is geconfigureerd.
Verwijzing naar secties:
Gebruik de informatie in API_docs.pdf om een voorbeeld van een API-aanroep
te genereren voor het ophalen van gebruikersgegevens.
Retrieval Augmented Generation (RAG)
RAG is beschikbaar op Claude’s betaalde abonnementen en activeert automatisch wanneer het volume van de projectkennis de standaard contextvensterlimiet nadert.
Kenmerken van RAG: - Automatische activering - Geen handmatige configuratie nodig - 10x capaciteitsvergroting - Uitbreiding van beschikbare kennis - Intelligente zoekfunctie - Haalt alleen relevante informatie op - Volledige integratie - Werkt met alle Claude-functies
Tabel 2: Claude Contextbeheer Benaderingen
	Benadering
	Beschrijving
	Beste Gebruiksscenario
	Persistentieniveau

	In-Sessie Context (Impliciet)
	Automatisch behoud binnen chat
	Snelle vragen, korte debugging
	Kortstondig

	Prompt Chaining
	Complexe taken opgesplitst
	Geleide probleemoplossing
	Sessie-gebaseerd

	Lange Context Prompting
	Strategische documentplaatsing
	Samenvatten van lange documenten
	Sessie-gebaseerd

	Claude Projecten (Native)
	Werkruimtes met projectkennis
	Langlopende projecten
	Project-gebaseerd

	Externe Sessiemanagers
	Project-geïsoleerde sessies
	Meerdere projecten tegelijk
	Cross-sessie

	Aangepaste RAG/Geheugensystemen
	Database-backed context
	Zeer complexe langdurige projecten
	Cross-sessie

4. Claude Sturen voor Vervolgvragen en Iteratieve Ontwikkeling
Claude’s Redenering en Vragen Begeleiden
Claude bezit het inherente vermogen om verhelderende vragen te stellen. Voor ontwikkelaars betekent dit het begeleiden van Claude om proactief te informeren naar ontbrekende vereisten, potentiële randgevallen of kritieke architectonische overwegingen.
Voorbeeldprompt om Claude vervolgvragen te laten stellen:
Je bent een ervaren software-engineer die me helpt bij het ontwerpen van een
nieuwe microservice. Ik heb de initiële vereisten bijgevoegd in requirements.txt.
Voordat je een ontwerpvoorstel doet, wil ik dat je alle onduidelijkheden of
ontbrekende informatie identificeert door gerichte vragen te stellen.
Stel maximaal 3 vragen per beurt.

<vereisten>
Inhoud van requirements.txt
</vereisten>

Begin met het analyseren van de vereisten en stel je eerste set vragen.
Voorbeeldprompt om Claude om bestanden te laten vragen:
Ik werk aan een bugfix in ons authenticatiesysteem. Ik heb de bug beschreven,
maar ik ben niet zeker welke bestanden relevant zijn. Kun je de codebase
analyseren en me vragen om de specifieke bestanden te uploaden die je nodig
hebt om de bug te begrijpen en een oplossing voor te stellen?
Artefacten Gebruiken voor Iteratieve Outputverfijning
Claude AI-artefacten zijn op zichzelf staande inhoudsblokken die verschijnen in een speciaal bewerkingsvenster naast de chatinterface. Deze functie stelt gebruikers in staat om gegenereerde inhoud direct te wijzigen en te itereren.
Kenmerken van Artefacten: - Zelfstandige inhoud - Meestal meer dan 15 regels - Direct bewerkbaar - Geen kopiëren/plakken nodig - Versiegeschiedenis - Schakel tussen iteraties - Herbruikbaar - Converteer naar projectkennis - Beperkingen - Statische rendering, geen externe API-aanroepen
Voorbeelden van Artefacten in ontwikkelaarsworkflows:
Code Generatie:
Genereer een React-component voor een gebruikersprofiel pagina. De component
moet de volgende elementen bevatten: profielfoto, naam, email, bio, en een
bewerkknop. Lever dit als een artefact zodat ik het direct kan bewerken.
HTML/CSS Webpagina’s:
Ontwerp een landingspagina voor een SaaS-product met een hero-sectie,
features-overzicht, en call-to-action. Gebruik moderne CSS met gradients
en animaties. Lever als HTML artefact met embedded CSS.
Diagrammen:
Maak een Mermaid-diagram van de software-architectuur voor een e-commerce
platform. Toon de relaties tussen frontend, API, database, en externe services.
Test-Driven Development (TDD) met Claude
Ontwikkelaars kunnen Claude integreren in een TDD-workflow door hun intentie expliciet te communiceren.
TDD-proces met Claude: 1. Tests schrijven - Gebaseerd op verwachte inputs/outputs 2. Bevestigen dat tests falen - Zoals verwacht voor TDD 3. Code schrijven - Om tests te laten slagen 4. Itereren - Tot alle tests slagen
Voorbeeld van TDD-workflow:
Prompt 1 (Tests schrijven):
We gaan Test-Driven Development toepassen. Schrijf eenheidstests in Python
voor een functie is_prime(number) die controleert of een getal een priemgetal is.
De tests moeten de volgende gevallen omvatten: 0, 1, 2, 7, 10, en een groot
priemgetal. Zorg ervoor dat de tests aanvankelijk falen.
Prompt 2 (Code schrijven):
De tests falen zoals verwacht. Schrijf nu de Python-functie is_prime(number)
die deze tests laat slagen. Voer de tests uit en bevestig dat ze slagen.
Prompt 3 (Verfijning/Edge cases):
De tests slagen. Kun je nu een extra testgeval toevoegen voor negatieve getallen
en de functie aanpassen om dit correct af te handelen?
5. Werken met Bestanden en Gegevens in Claude
Directe Bestandsuploads
Claude biedt een eenvoudige methode om bestanden rechtstreeks aan de promptbox te koppelen via de “Bestand bijvoegen”-knop.
Ondersteunde formaten: - Documenten: PDF, DOCX, CSV, TXT, HTML, ODT, RTF, EPUB, JSON - Afbeeldingen: PNG, JPG, GIF - Spreadsheets: XLSX (met analysis tool)
Limieten: - 30 MB per bestand - 20 bestanden per chat
Niet ondersteund: - ZIP-bestanden (moeten handmatig uitgepakt worden) - Executable bestanden - Audio/video bestanden
Wanneer directe bijlagen gebruiken: - Eenmalige analyses van specifieke documenten - Context alleen relevant voor huidige chat - Snelle ad-hoc taken (samenvatten, data-extractie)
Projectkennis Benutten voor Bestandsgebaseerde Taken
Binnen Claude Projecten worden alle geüploade bestanden omgezet in “projectkennis”, waarnaar Claude naadloos kan verwijzen in verschillende chatgesprekken.
Voordelen van projectkennis: - Herbruikbaarheid - Toegang in meerdere chats - Doorzoekbaarheid - Directe informatie retrieval - Bronverwijzing - Citeert specifieke bestanden - Consistente context - Over sessies heen
Wanneer projectkennis gebruiken: - Langlopende projecten met vaste documentatie - Consistente context over meerdere sessies - Teamprojecten met gedeelde kennis - Grote hoeveelheden documentatie (RAG activeert automatisch)
Claude Code’s Bestandsafhandelingsmogelijkheden
Claude Code is een command-line tool voor agentic coding met uitgebreide bestandsafhandeling. Het bevindt zich momenteel in bèta.
Mogelijkheden: - Directe bestandsbewerking - Zonder handmatige kopieën - Git-integratie - Commits, merges, conflictoplossing - Test-uitvoering - Directe validatie - Tab-completion - Precieze bestandsverwijzing - CLAUDE.md ondersteuning - Automatische contextinjectie
Bestandsverwijzing in Claude Code:
Algemene richtlijnen
"lees het bestand dat logging afhandelt"

Specifieke bestandsnamen
"lees logging.py"

Tab-completion
"analyseer src/components/[TAB]"
Tabel 3: Claude Bestandsbeheer en Limieten
	Functie
	Details

	Ondersteunde Bestandstypen
	PDF, DOCX, CSV, TXT, HTML, ODT, RTF, EPUB, JSON, afbeeldingen, XLSX

	Maximale Bestandsgrootte
	30 MB per bestand

	Maximale Bestanden per Chat
	20 bestanden tegelijkertijd

	Totale Projectkennis Limiet
	200.000 tokens (≈ 500 pagina’s)

	RAG Activering
	Automatisch bij overschrijding limiet, uitbreiding tot 10x capaciteit

	ZIP Ondersteuning
	Niet ondersteund - bestanden moeten individueel geüpload worden

6. Ontwikkelaarsworkflows Optimaliseren met Claude
Best Practices voor Agentic Coding
Claude Code is ontworpen voor agentic coding en biedt een flexibele, onbevooroordeelde aanpak. Het is momenteel beschikbaar in bèta.
Essentiële best practices:
CLAUDE.md Bestanden (Voor Claude Code)
Belangrijk: CLAUDE.md bestanden zijn een functie van Claude Code, niet Claude Projects.
Speciale Markdown-bestanden die automatisch in context worden getrokken voor projectspecifieke instructies in Claude Code.
Voorbeeld CLAUDE.md bestand:
Project Richtlijnen voor Claude Code

1. Codestijl en Kwaliteit
- Alle Python-code moet voldoen aan PEP 8
- Gebruik black voor automatische formattering
- Alle functies moeten docstrings bevatten

2. Testen
- Gebruik pytest voor eenheidstests
- Schrijf eerst falende tests (TDD)
- Voer tests uit met pytest en bevestig dat ze slagen

3. Git Workflow
- Maak altijd een nieuwe branch voor elke taak
- Schrijf duidelijke commit-berichten
- Voer git status en git diff uit voordat je commit

4. Specifieke Tools
- Dit project gebruikt poetry voor afhankelijkheidsbeheer
- Voor database-migraties gebruiken we alembic

5. Algemeen Gedrag
- Als je onzeker bent, vraag om verduidelijking
- Rapporteer aannames die je maakt
- Ruim tijdelijke bestanden op aan het einde
Toegestane Tools Beheren
Configureer welke tools Claude mag gebruiken om frequente toestemmingsprompts te voorkomen: - Veilige acties toestaan: Bestandsbewerking, git commit - Gevaarlijke acties beperken: Systeemcommando’s, netwerk
Complexe Problemen Aanpakken
Voor complexe taken: 1. Verken eerst - Gebruik “denk stap voor stap” commando’s 2. Plan daarna - Maak een implementatiestrategie 3. Implementeer stapsgewijs - Iteratieve ontwikkeling 4. Valideer continu - Tests en controles
Integratie met Versiebeheer (Git/GitHub)
Claude kan effectief worden gebruikt voor diverse Git-operaties en GitHub-interacties.
Git-operaties met Claude: - Geschiedenis doorzoeken - Analyseer commit geschiedenis - Commit-berichten opstellen - Informatieve en precieze berichten - Rebase-conflicten oplossen - Gestructureerde conflictoplossing - Branch-management - Strategische branch-organisatie
GitHub-integratie (met gh CLI): - Issues aanmaken - Gestructureerde probleemrapportage - Pull requests openen - Met uitgebreide beschrijvingen - Code reviews - Geautomatiseerde review-opmerkingen - CI/CD fixes - Automatische build-reparaties
Voorbeelden van Git/GitHub-prompts:
Commit-bericht genereren:
Genereer een beknopt en informatief commit-bericht voor de huidige wijzigingen
in de staging-omgeving. De wijzigingen betreffen het toevoegen van
gebruikersauthenticatie via OAuth2.
Rebase-conflict oplossen:
Ik heb een rebase-conflict in het bestand src/auth.js. Help me dit conflict
op te lossen door de wijzigingen van de feature/oauth branch te prioriteren.
GitHub Issue aanmaken:
Maak een nieuw GitHub Issue aan voor een bug: 'Gebruikers kunnen geen
profielfoto uploaden'. Beschrijf de stappen om te reproduceren en de
verwachte/werkelijke resultaten.
Aangepaste Tools en Automatisering
Claude Code erft de bash-omgeving van de ontwikkelaar, waardoor aangepaste tools kunnen worden gebruikt.
Aangepaste Bash Tools
Ik heb een aangepaste bash-tool genaamd deploy_app die onze applicatie naar
de staging-omgeving implementeert. Het commando is:
deploy_app --env [environment] --version [version]

Gebruik deze tool om versie 1.2.0 te implementeren naar staging.
Aangepaste Slash Commando’s
Creëer herbruikbare commando’s door templates op te slaan in .claude/commands/:
Bestand: .claude/commands/create-component.md
Maak een nieuw React-component genaamd $ARGUMENTS in de map src/components.
Het component moet een functioneel component zijn met een basisstructuur en styling.
Gebruik:
/create-component Button
Headless Mode voor Automatisering
CI/CD-pijplijn voorbeeld
git diff main...HEAD | claude -p "Voer een codereview uit op deze diff.
Let op leesbaarheid, best practices en prestatieproblemen."
--output-format stream-json > review_results.json
Gebruiksscenario’s voor headless mode: - Issue-triage - Automatische label-toewijzing - Geavanceerde linting - Subjectieve code-beoordelingen - CI/CD-integratie - Pre-commit hooks met AI-validatie
7. Praktische Scenario’s met Claude
Deze sectie illustreert hoe ontwikkelaars en niet-techneuten Claude effectief kunnen inzetten voor diverse taken.
Scenario 1: Eenvoudige Code Generatie met Specifieke Vereisten
Doel: Een Python-functie genereren die voldoet aan specifieke functionele en kwaliteitsvereisten.
Aanpak: Duidelijke en specifieke prompt met gewenste outputformaat.
Prompt:
Je bent een Python-ontwikkelaar. Schrijf een functie genaamd `calculate_bmi`
die twee float-argumenten accepteert: `weight_kg` en `height_m`. De functie
moet de Body Mass Index (BMI) berekenen volgens de formule
`gewicht (kg) / (lengte (m))^2`.

Zorg ervoor dat:
1. De functie een `ValueError` genereert als `weight_kg` of `height_m` niet positief zijn
2. De functie een docstring bevat die het doel, argumenten en retourwaarde beschrijft
3. De code voldoet aan PEP 8-richtlijnen

<voorbeeld_gebruik>
print(calculate_bmi(70, 1.75)) # Verwachte output: ongeveer 22.86
</voorbeeld_gebruik>
Uitleg: Deze prompt is zeer specifiek en definieert functienaam, argumenten, formule, foutafhandeling, documentatie en codestandaarden. Het voorbeeld helpt Claude het verwachte gedrag te begrijpen.
Scenario 2: Complexe Bug Fixing met Dynamische Contextaanvraag
Doel: Een complexe bug oplossen waarbij Claude om aanvullende bestanden vraagt als de initiële context onvoldoende is.
Initiële Prompt:
Je bent een senior Node.js-ontwikkelaar gespecialiseerd in Express.js-applicaties.
Ik heb een bug in onze API. Gebruik de bijgevoegde bestanden `routes/user.js`
en `models/User.js` om het probleem te analyseren.

Bug Beschrijving:
Gebruikers kunnen hun profielafbeelding niet bijwerken. De API-aanroep naar
`/api/users/:id/profile-picture` retourneert een 500 Internal Server Error.
De serverlogs tonen "file upload handler missing".

Mijn hypothese:
Ik vermoed dat er een probleem is met de middleware voor bestandsuploads.

Analyseer de bestanden en geef een diagnose. Als je meer bestanden nodig hebt,
vraag er dan specifiek om.
Scenario 3: Architectuur Review met Projectkennis
Doel: Diepgaande architectuurreview uitvoeren met behulp van een vooraf geconfigureerd Claude Project.
Claude Project Setup: - Titel: “Backend Service Architectuur Review” - Beschrijving: “Microservice-gebaseerde backend applicatie analyse” - Projectkennis: - architecture_overview.pdf - service_A_design.md - service_B_design.md - database_schema.sql - Individuele codebestanden (geen ZIP) - Aangepaste Instructies:
Je bent een senior cloud-architect met expertise in schaalbare microservices
en beveiliging. Focus op schaalbaarheid, onderhoudbaarheid, beveiliging,
prestaties en best practices. Geef concrete aanbevelingen en onderbouw deze
met verwijzingen naar geüploade documenten. Vermeld aannames expliciet.
Prompt (binnen het Project):
Voer een uitgebreide architectuurreview uit van de backend-services. Begin
met een samenvatting van de huidige architectuur, identificeer potentiële
knelpunten of kwetsbaarheden, en geef gedetailleerde aanbevelingen voor
verbetering.

Gebruik de projectkennis om je analyse te onderbouwen en citeer relevante
secties of bestanden.
Scenario 4: Test-Driven Development (TDD) van een Nieuwe Feature
Doel: Een nieuwe feature ontwikkelen met TDD-principes, waarbij Claude de tests en implementatie begeleidt.
Prompt 1 (Tests schrijven):
Je bent een ervaren software-engineer die Test-Driven Development toepast.
Ik wil een Python-functie `assess_password_strength(password: str) -> str`
die de sterkte van een wachtwoord beoordeelt en een van de volgende strings
retourneert: "Zeer Zwak", "Zwak", "Gemiddeld", "Sterk", "Zeer Sterk".

Schrijf eenheidstests met `pytest` voor de volgende gevallen:
1. Een zeer zwak wachtwoord (bijv. "abc")
2. Een zwak wachtwoord (bijv. "wachtwoord123")
3. Een gemiddeld wachtwoord (bijv. "Wachtwoord123!")
4. Een sterk wachtwoord (bijv. "SterkWachtwoord!@#123")
5. Een zeer sterk wachtwoord (bijv. "ZeerSterkWachtwoord!@#$12345")
6. Een leeg wachtwoord

Zorg dat de tests aanvankelijk falen.
Prompt 2 (Code schrijven):
De tests falen zoals verwacht. Schrijf nu de Python-functie
`assess_password_strength` die deze tests laat slagen.

<tests>
Inhoud van test_password_strength.py
</tests>

Voer de tests uit en bevestig dat ze slagen.
Scenario 5: Geautomatiseerde Documentatie
Doel: Een uitgebreide README.md genereren met projectspecifieke richtlijnen.
Voor Claude Code gebruikers kan een CLAUDE.md bestand worden gebruikt:
CLAUDE.md bestand:
Project Richtlijnen: Documentatie

Dit project is een RESTful API voor een taakbeheersysteem.
Alle documentatie moet duidelijk, beknopt en ontwikkelaar-gericht zijn.

README.md Vereisten
- Projectoverzicht
- Features
- Technologieën
- Installatie
- API Endpoints (met voorbeelden)
- Tests uitvoeren
- Bijdragen

Gebruik professionele en informatieve toon.

Bestandsstructuur
- `src/`: Broncode
- `docs/`: Aanvullende documentatie
- `tests/`: Testbestanden
Prompt:
Je bent een technische schrijver. Genereer een uitgebreide `README.md` voor
dit project op basis van de richtlijnen. Zorg dat alle vereiste secties
aanwezig zijn en API-endpoints duidelijke voorbeelden bevatten.
Lever de output als een Markdown-artefact.
Scenario 6: Gegevensanalyse voor Niet-Techneuten
Doel: Inzicht krijgen in verkoopgegevens en klantfeedback uit Excel-bestanden zonder technische kennis.
Stappen: 1. Bestanden uploaden: Klik op “Bestand bijvoegen” en selecteer de Excel-bestanden 2. Vragen stellen: Wees specifiek over wat u wilt weten
Voorbeeldprompts:
Prompt 1 (Verkoopoverzicht):
Ik heb twee bestanden geüpload: 'Verkoopgegevens_Q1_2025.xlsx' en
'Klantfeedback_Q1_2025.xlsx'.

Analyseer de 'Verkoopgegevens_Q1_2025.xlsx' en vertel me:
1. Wat de totale omzet was in Q1 2025
2. Welke productcategorie het meest verkocht is
3. Wat de gemiddelde verkoopprijs per product was
Prompt 2 (Feedback analyse):
Kijk nu naar 'Klantfeedback_Q1_2025.xlsx'.

Identificeer de belangrijkste thema's of veelvoorkomende klachten die klanten
hebben genoemd. Geef een korte samenvatting van de algemene sentimenten.
Prompt 3 (Gecombineerde inzichten):
Gebruik informatie uit beide bestanden.

Is er een verband tussen de productcategorie die het meest verkocht is en
de feedback die klanten hebben gegeven over die specifieke categorie?
8. Conclusie: De Toekomst van AI-ondersteunde Ontwikkeling met Claude
Samenvatting van Kernstrategieën
Dit lesmateriaal heeft verschillende fundamentele strategieën voor effectief “slim prompten” in Claude beschreven:
Prompting Fundamenten: - Duidelijkheid en specificiteit in instructies prioriteren - Few-shot voorbeelden strategisch gebruiken voor gedragssturing - Gestructureerde denktechnieken (Chain-of-Thought) voor complexe problemen - XML-tags voor gestructureerde input en output - Iteratieve verfijning gebaseerd op Claude’s reacties
Contextbeheer: - Claude Projecten strategisch adopteren voor persistente kennisbases - RAG (Retrieval Augmented Generation) automatisch benutten - Optimale documentplaatsing voor grote bestanden - Bestandsbeperkingen respecteren (geen ZIP-ondersteuning)
Werkflowintegratie: - Artefacten gebruiken voor iteratieve inhoudsverfijning - Claude Code’s agentic mogelijkheden omarmen (met CLAUDE.md bestanden) - TDD-workflow integreren met AI-ondersteuning
Evolutie van Claude’s Mogelijkheden
De Claude 4 modelfamilie toont significante vooruitgang:
Claude 4 Kenmerken: - Claude Sonnet 4 (claude-sonnet-4-20250514): Efficiënt model voor dagelijks gebruik - Claude Opus 4 (claude-opus-4-20250514): Geavanceerd model voor complexe taken - 200K token contextvenster voor beide modellen - Verbeterde denkvermogens met extended thinking - Naadloze RAG-integratie - Automatische schaling binnen Projecten - Geavanceerde agentic mogelijkheden via Claude Code
Paradigmaverschuiving in Softwareontwikkeling
De integratie van AI-assistenten zoals Claude vertegenwoordigt een fundamentele verschuiving in de softwareontwikkeling:
Van Traditioneel naar AI-ondersteund: - Tool-assistentie → Intelligente samenwerking - Handmatige documentatie → Geautomatiseerde generatie - Reactieve debugging → Proactieve analyse - Statische templates → Dynamische code-generatie
De “Cyborg-achtige Workflow”: - AI excelleert in conceptuele ontwikkeling en snelle iteratie - Menselijke ontwikkelaar behoudt controle, validatie en implementatie - Symbiotische relatie maximaliseert efficiëntie en kwaliteit
Strategische Aanbevelingen voor Ontwikkelaars
Korte termijn (0-6 maanden): 1. Beheers prompting fundamenten - Investeer in effectieve communicatie met AI 2. Adopteer Claude Projecten - Bouw persistente kennisbases op 3. Integreer in dagelijkse workflow - Begin met eenvoudige taken 4. Experimenteer met TDD - Gebruik AI voor test-gedreven ontwikkeling
Middellange termijn (6-18 maanden): 1. Ontwikkel aangepaste workflows - Voor Claude Code: CLAUDE.md bestanden, slash-commando’s 2. Verken agentic coding - Claude Code voor complexe taken 3. Bouw teamkennis op - Gedeelde projecten en best practices 4. Integreer met CI/CD - Geautomatiseerde reviews en validatie
Lange termijn (18+ maanden): 1. Anticipeer op autonome AI - Bereid voor op zelfstandige AI-agents 2. Investeer in AI-literacy - Blijf bij met ontwikkelingen 3. Herdefinieer rollen - Van coder naar AI-orkestrator 4. Innoveer met AI - Verken nieuwe mogelijkheden en toepassingen
Slotgedachte
De toekomst van softwareontwikkeling ligt niet in de vervanging van menselijke expertise door AI, maar in de intelligente samenwerking tussen mens en machine. Claude en vergelijkbare AI-assistenten transformeren van tools naar partners, waarbij de combinatie van menselijke creativiteit, kritisch denken en contextueel begrip met AI’s snelheid, consistentie en uitgebreide kennisbasis ongekende mogelijkheden biedt.
Het beheersen van “slim prompten” is daarom niet alleen een technische vaardigheid, maar een strategische competentie die de effectiviteit van moderne softwareontwikkeling bepaalt. Ontwikkelaars die deze vaardigheden vroeg adopteren en verfijnen, zullen beter gepositioneerd zijn om te profiteren van de AI-revolutie in softwareontwikkeling.
9. Kennistoets
Test uw begrip van slim prompten in Claude met de volgende vragen:
Vraag 1
Welk van de volgende prompttechnieken is het meest effectief om Claude te helpen complexe problemen stap voor stap op te lossen?
1. Few-Shot Prompting
1. XML-tags
1. Chain-of-Thought (CoT) Prompting
1. Directe Bestandsuploads
Vraag 2
Wat is het belangrijkste voordeel van het gebruik van Claude Projecten voor ontwikkelaars?
1. Het verlaagt de abonnementskosten van Claude
1. Het maakt het mogelijk om context en bestanden te behouden over meerdere sessies heen
1. Het verhoogt de maximale bestandsgrootte voor individuele uploads
1. Het schakelt automatisch de headless-modus in
Vraag 3
U wilt dat Claude een HTML-webpagina genereert die u direct kunt bewerken en waarvan u een live preview kunt zien. Welke Claude-functie moet u hiervoor gebruiken?
1. Projectkennis
1. CLAUDE.md bestanden
1. Artefacten
1. Headless Mode
Vraag 4
Welke van de volgende bestandstypen wordt NIET ondersteund voor upload naar Claude Projecten?
1. PDF
1. DOCX
1. CSV
1. ZIP (gecomprimeerde map)
Vraag 5
Waarom is het belangrijk om Claude te instrueren om “stap voor stap te denken” bij complexe taken?
1. Het zorgt ervoor dat Claude sneller antwoordt
1. Het dwingt Claude om zijn redeneringsproces te simuleren, wat de nauwkeurigheid en debugbaarheid verbetert
1. Het vermindert de hoeveelheid tokens die Claude gebruikt
1. Het is alleen relevant voor niet-technische vragen
Vraag 6
Wat is waar over CLAUDE.md bestanden?
1. Ze zijn een functie van Claude Projecten
1. Ze zijn een functie van Claude Code
1. Ze werken in alle Claude interfaces
1. Ze vervangen aangepaste instructies
10. Cheatsheet voor Slim Prompten in Claude
Prompt Basis
	Techniek
	Beschrijving
	Voorbeeld (Ontwikkelaar)

	Duidelijkheid & Specificiteit
	Wees expliciet over taak, gewenste output, formaat en beperkingen
	“Schrijf een Python-functie validate_email(email_str) die True retourneert voor geldige e-mails en False anders. Gebruik regex.”

	Few-Shot Prompting
	Geef concrete input-output voorbeelden om gedrag te demonstreren
	Toon voorbeelden van hoe JSON-configuraties moeten worden geformatteerd

	Gestructureerd Denken (CoT)
	Instrueer Claude om stap-voor-stap te denken (<thinking> tags)
	“Debug deze functie stap voor stap. Denk na over elke variabele en de logica.”

	XML-tags
	Gebruik tags (<tag>inhoud</tag>) voor structuur en opmaak
	Omwikkel code met <code_snippet> en uitleg met <explanation>

	Rolspelen
	Wijs Claude een specifieke rol toe
	“Je bent een beveiligingsanalist. Beoordeel deze code op kwetsbaarheden.”

	Iteratieve Verfijning
	Verfijn prompts op basis van eerdere antwoorden; wees specifiek in feedback
	“Dat is goed, maar voeg foutafhandeling toe voor netwerkfouten.”

Contextbeheer
	Techniek
	Beschrijving
	Voorbeeld (Ontwikkelaar)

	Claude Projecten
	Gebruik projecten voor persistente kennisbases en aangepaste instructies
	Upload individuele codebestanden, API-docs, en stel instructies in als “senior backend engineer”

	Projectkennis (Bestanden)
	Upload relevante bestanden naar een project voor doorlopende context
	Voeg architecture.pdf, user_stories.md, database_schema.sql toe (geen ZIP)

	Aangepaste Instructies (Projecten)
	Definieer projectspecifieke gedragsregels en kwaliteitsstandaarden
	“Alle code moet unit-tests bevatten en docstrings.”

	Bestanden Refereren
	Verwijs expliciet naar geüploade bestanden in prompts
	“Lees config.yaml en stel een plan voor de migratie voor.”

	RAG (Automatisch)
	Weet dat RAG automatisch activeert voor grote projectkennis
	Upload grote datasets; Claude beheert de retrieval automatisch

Controle & Samenwerking
	Techniek
	Beschrijving
	Voorbeeld (Ontwikkelaar)

	Vragen Laten Stellen
	Instrueer Claude om om verduidelijking of ontbrekende bestanden te vragen
	“Als je meer context nodig hebt, vraag dan om de specifieke bestanden.”

	Artefacten Gebruiken
	Vraag om outputs als bewerkbare artefacten (code, HTML, diagrammen)
	“Genereer de React-component als een artefact.”

	Test-Driven Development (TDD)
	Leid Claude door TDD: tests schrijven, code schrijven, itereren
	“Schrijf eerst falende tests voor de login functie, dan de implementatie.”

	CLAUDE.md Bestanden
	Definieer projectrichtlijnen voor Claude Code (niet Projecten)
	Plaats CLAUDE.md in de root met regels voor commits en tests

	Git/GitHub Integratie
	Gebruik Claude voor Git-operaties en GitHub-interacties
	“Genereer een commit-bericht voor deze wijzigingen.”

	Aangepaste Tools & Automatisering
	Instrueer Claude om lokale bash-tools te gebruiken of slash-commando’s te maken
	“Gebruik npm test om de tests uit te voeren.” of /create-component [naam]

	Headless Mode
	Gebruik Claude in CI/CD-pijplijnen voor geautomatiseerde taken
	git diff \| claude -p "Review deze code"

Belangrijke Beperkingen
	Beperking
	Details

	ZIP Bestanden
	Niet ondersteund - bestanden moeten individueel geüpload worden

	Context Limiet
	200.000 tokens voor beide Claude 4 modellen

	Mythische Technieken
	“Think harder” en “ultrathink” zijn niet bewezen effectief

	Bestandsgrootte
	Maximaal 30MB per bestand

	CLAUDE.md Scope
	Alleen voor Claude Code, niet voor Claude Projecten

11. Antwoorden op de Kennistoets
Vraag 1: c) Chain-of-Thought (CoT) Prompting
Vraag 2: b) Het maakt het mogelijk om context en bestanden te behouden over meerdere sessies heen
Vraag 3: c) Artefacten
Vraag 4: d) ZIP (gecomprimeerde map) - ZIP-bestanden worden niet nativ ondersteund door Claude Projects. Bestanden moeten individueel geüpload worden na uitpakking.
Vraag 5: b) Het dwingt Claude om zijn redeneringsproces te simuleren, wat de nauwkeurigheid en debugbaarheid verbetert
Vraag 6: b) Ze zijn een functie van Claude Code - CLAUDE.md bestanden worden gebruikt door Claude Code voor automatische contextinjectie, niet door Claude Projects.

Dit bijgewerkte lesmateriaal is gebaseerd op geverifieerde informatie over Claude 4’s mogelijkheden vanaf juni 2025. Voor de meest recente informatie over Claude’s mogelijkheden, raadpleeg de officiële Anthropic documentatie.
